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Abstract. The accumulation of the Jacobian matrix F’ of a vector function F : IR"* — IR™
can be regarded as a transformation of its linearized computational graph into a subgraph
of the directed complete bipartite graph K m. This transformation can be performed by
applying different elimination techniques that may lead to varying costs for computing F’.
This paper introduces face elimination as the basic technique for accumulating Jacobian
matrices by using a minimal number of arithmetic operations. Its superiority over both edge
and vertex elimination methods is shown. The intention is to establish the conceptual basis for
the ongoing development of algorithms for optimizing the computation of Jacobian matrices.
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1. Introduction to Accumulation of Jacobian Matrices

The efficient computation of accurate derivative information for mathematical
models is central to many scientific, economic, and engineering problems. With-
out it the highly desirable step from simulation to optimization often cannot be
made. First-order derivatives of nonlinear vector functions given as computer
programs that are written in some imperative programming language, such as
C or Fortran, play an especially important role in modern scientific comput-
ing. Automatic differentiation (AD) [4], [7], [8], [13] allows us to compute such
derivative information efficiently with machine accuracy.

The Jacobian matrix (or simply Jacobian) of a nonlinear vector function
y=F(x), F:IR*" DD — IR™, evaluated at a given argument xg, is defined as
follows:

8%
(B™" 3) F' = F(xo) = ( (x0>)
Ox; i=1,...,m, j=1,...n

Following the standard notation as in [13], we assume the computer program
that implements F' to decompose into a sequence of g assignments of the values
of scalar elemental functions ¢; to unique intermediate variables v;. The code
list of F' is given as

(R 3)vj =j(vi)i<j (1)
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where j =1,...,q and p = ¢ — m. The direct dependence of v; on v; is denoted
by i < j. The notation i <* j is used if there exist ki,...,k, such that i <
ki <ky <...<k, <j So, P; ={i:i < j} is the index set of the arguments
of ¢;, and we denote its cardinality by |P;|. Similarly, S; = {i : j < i} is
the index set of the |S;| elemental functions that have v; as an argument. We
distinguish between independent ({vi—p,...,vo}), intermediate ({v1,...,vp}),
and dependent ({vp11,...,v4}) variables, and we set z; = v;_p, i = 1,...,n,
and y; = vp4j, j = 1,...,m. The computational graph (or c-graph) G = (V, E)
of F is a directed acyclic graph with V' = {i : v; € F} and (i,j) € E if
i < j. Moreover, V. = X UZUY, where X = {1-mn,...,0}, Z = {1,...,p},
andY ={p+1,...,q}. An edge k = (i,j) € E has a source i = src(k) and a
target j = tgt(k). Throughout this paper, edges are addressed by their uniquely
assigned indices and vertices as sources, or targets, of edges. This is our main
notational change from [13].

We assume G to be linearized in the sense that the local partial derivatives

0

“ = 6Usrc(j)

Pege(j) (Vk) k<ege(f) (2)
are attached to the corresponding edges j € E. We rely on the existence of
jointly continuous partial derivatives for all elemental functions ¢;, ¢ =1,...,q,
on open neighborhoods D; C IRIP:! of their respective domains. Edges in E are
numbered so that, w.l.o.g., E C IN, where IN denotes the natural numbers.
Parallel edges having the same source and target are merged immediately by
adding the values of the local partial derivatives labeling them.

F' can be accumulated by using the forward (vector) mode of AD [36], which
computes Jacobian-matrix products ¥ = F'X by forward propagation of (sets
of) tangents as described in [13, Chapter 3]. For this purpose one simply sets
X = I,,, where I,, denotes the identity matrix in IR™*"™. Similarly, the reverse
(vector) mode of AD, which computes matrix-Jacobian products, (see [18] for a
discussion of its orlglns) can be applied to get F' by setting Y = I,,, € IR™*™ in
X = YF'. By the chain rule and with |E| denoting the number of edges in G,
this approach would require the evaluation of n|E| and m|E| fused multiply-add
(fma) operations ¢, = ¢ + cjc;, where src(j) = tgt(i), src(i) = src(k), and
tgt(j) = tgt(k), respectively (see Lemma 6). Some modern floating-point units
can perform these operations in the same time as single scalar multiplications
[19]. In other words, they give the addition on top of a multiplication “for free.”
Other architectures, including Compaq Alpha, SGI and SUN Ultra SPARC ma-
chines, do not perform fma’s but can perform two independent adds or multiplies
per clock cycle [10]. They therefore would complete one multiply-add in two clock
cycles but average two multiply-adds per cycle if they can pipeline the opera-
tions. This paper assumes the number of fma’s as the measure of complexity.
The number of fma’s is equal to the number of scalar floating-point multiplica-
tions because the latter represents an upper bound for the number of additions
performed. The task of finding a way to compute F' by using a minimal num-
ber of fma’s will be referred to as the optimal Jacobian accumulation (OJA)
problem. The approach taken in this paper is to consider the accumulation of
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the Jacobian as a transformation of the c-graph G into G', a subgraph of the
directed complete bipartite graph K, »,, such that the labels on the edges in G’
are exactly the nonzero entries of F”.

From the chain rule it follows that an entry of the Jacobian can be computed
by multiplying the edge labels over all paths connecting the corresponding ¢ € X
and j € Y followed by adding these products [23]. This can be expressed as

B I e (3)

[i=] keli—]

where [i — j] denotes a path leading from i to j and k € E
is an edge contained within [¢ — j]. In other words, F' can
be accumulated by enumerating all paths connecting mini-
mal (in X) with maximal (in V) vertices in G. This paper
introduces methods for transforming G into G'. The paper
is structured as follows. In Section 2 we discuss an exam-
ple motivating new elimination techniques. In Section 3 we
introduce face elimination and derive both edge and vertex
eliminations as special cases. In Section 4 we prove the su-
periority (in terms of fma’s) of edge over vertex elimination
and of face over edge elimination In Section 5 we briefly
discuss algorithms for constructing near-optimal elimina-
tion sequences. In Section 6 we draw conclusions.

2. Motivating Example

Consider the vector function F : IR? — IR? given by the following code list:
V1 = v_1vp; vy = sin(vy); vz = v1v2; v4 = cos(vs); vs = exp(v3).

Its c-graph G is shown in Figure 1 with the local partial derivatives attached to
the corresponding edges. They take the following values:

€1 = Vp; €z =U_1; €3 = Va; ¢4 = cos(v1); ¢5 =wv1; cg = —sin(vs); ¢r = vs.
We are looking for an efficient way to transform G into G', as shown in Figure 2.
According to equation (3) the Jacobian of F is given explicitly by

B = C1C3C6 + C1C4C5C6  C2C3C6 + C2C4C5C6 (4)
C1C3C7 + C1C4C5C7  C2C3C7 + C2C4C5C7

Computing F’ this way involves 20 fma’s. Both forward and reverse modes of
AD perform 2|E| = 14 fma’s, where n = m = 2. As F' is dense, seed matrix
compression techniques [31], [9] are not applicable. Sparse forward and reverse
modes [13, Chapter 6] reduce the cost of accumulating F’ to 12 fma’s at the ex-
pense of performing sparse vector arithmetic. The reader may wish to verify that
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r_ [ces cet
F = <C7S C7t> (5)

can be computed at a cost of only 7 fma’s by preaccu-
mulation of r = ¢3 + ¢c5¢4, s = ey, and t = res.

This paper introduces the theoretical framework
for constructing derivative code that implements equa-
tion (5), in general. Undoubtedly, the fact that improve-
ments by a factor of two and more are possible even on
this simple example is very promising. So far, the un-
derlying theory has been looked at only very briefly [15],
[5]. In [24] we proposed several optimization methods for
Jacobian code and presented numerical results. Chapter 8 in [13] is dedicated
to elimination techniques and contains some of the ideas presented here. Sev-
eral specific optimization methods are currently being developed based on the
elimination techniques to be introduced [29], [35].

Fig. 2. G/

3. Elimination Techniques

Before introducing elimination techniques, we motivate the feasibility of the
general approach in practice. The generation of efficient code for accumulating
F' is regarded as a compile time activity. Therefore, G must be available at
compile time. However, computer programs may contain loops with variable
bounds and branches that make the structure of G dependent on the actual
argument at which F' is evaluated. The structure of G may change dynamically.

Basic blocks [1] represent the primary candidates for an accumulation of local
Jacobians using elimination techniques (see also [6]). Their c-graphs can be built
at compile time, and their sizes are usually small. The question is: What can we
gain?

Let F be given as a basic block, and consider the computation of Y = F' X,
X e IR™¥. For simplicity, we assume that m = n and that [ > n. Techniques
for exploiting this inequality are also referred to as interface contractions [5].
With the forward vector mode of AD, the number of fma’s performed is equal to
[|E|. Suppose that the forward vector mode of AD is applied to preaccumulate
F' by forward propagation of I,,, as described in Section 2, followed by the
evaluation of the matrix product F'X. The first preaccumulation would cost at
most n|E| fma’s, and the matrix product adds n?l. The (worst case) question is:
Under which circumstances [|E| will become larger than n?l +n|E|? The answer
depends on the given problem (see also [13, Chapter 8]). For example, if [ > 2n
and |E| > 4n?, this approach would yield savings of a factor of at least two.
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Formally, for the preaccumulation to be more efficient, we need

n|E| +n’l < I|E|
n?l < |E|(l —n)

n?l
1B > 5

E
||>1_%

That is, the more complicated the function (large |E|) or the greater the number
of Jacobian-vector products required (large [), the greater the savings due to
preaccumulation. Moreover, the cost of accumulating the Jacobian itself can be
reduced significantly by applying the elimination techniques, to be introduced
next.

3.1. Dual Computational Graphs

All elimination techniques discussed in this paper are
based on the elimination of transitive dependences be-
tween variables in F. A variable v; depends transitively
on v; via vy, if i < k < j. In general, there is no struc-
tural representation for eliminating such dependences in
G; that is, it cannot be expressed by modifying either

V or E. A richer data structure is required, namely, a
directed variant of the line graph of G.

For i,j € E we write i < j < tgt(i) = src(j). The
transitive closure of this relation between edges is also

denoted by <*

- 1[e1] 2 [e2]
Definition 1 The dual c-graph G = (V,E) of G con- l l
sists of vertices V. = X UZ U Y such that X N Z = 1 0
Xny = YﬂZ—Q andedgesE EXUEZUEy,
with EX ﬂEZ = EX ﬁEy = Ey ﬁEZ = . It is defined
by the following comnstruction:

1. Z=E;

2. (i,j) € Ez foralli,j € E and i < j;

. VieX :ieX;

4. VieY : i—p+|EleY;

5 (i,j) € Ex fori € X, j € Z, and src(j) =i in G;

6. (i,j) € By fori€ Z,j €Y, and tgt(i) = j — |E| + p in G.

co
©

6 Cﬁ 7 [67}

Fig. 3. G

In other words, intermediate vertices Z in G are introduced for all edges in G.
Two of them are adjacent in G whenever the corresponding edges are incident
in G. We write i=(j, k) if i € Z corresponds to (j,k) € E. Additional minimal
vertices X and maximal vertices Y are required to represent the fact that two
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Fig. 4. Motivation for definition of dual c-graph

edges in G share either the same minimal source or the same maximal target.
Consequently, the vertices in G are given by

V=XUZUY ={l-mn,...,0}U{l,..,|E|]}U{|E| +1,...,|E| +m}.

The edge labels in G are attached to the corresponding intermediate vertices
in G. The precedence relation “<” is extended to all vertices in Gasi<je
(i,j) € E.

Figure 3 shows the dual of the c-graph in Figure 1. The set of intermediate
vertices Z corresponds to the edges E in the c-graph G. For example, vertex
1 € Z corresponds to the edge (—1,1) € E that is labelled ¢; in G (step 1 in
Definition 1). There is an edge in E connecting a vertex i € Z with a vertex
j € Z if the edges corresponding to i and j in G share a common vertex, more
precisely, if i=(k1, k2) and j=(ka, k3) for some ki, ko, k3 € V. For example, the
vertices 4 and 5 are connected by the edge (4,5) € E, because the edge labelled
¢4 in the c-graph G, that is (1,2) € E, precedes the edge labelled c5, that is
(2,3) € E, at vertex 2 € V (step 2 in Definition 1).

Two minimal vertices —1 and 0 are introduced to represent assumed edges
leading into the minimal vertices in G (step 3 in Definition 1). They are con-
nected to the vertices 1 and 2, respectively (step 5 in Definition 1). A similar
action is performed for the maximal vertices in G (steps 4 and 6 in Definition 1)
leading to the vertices 8 and 9 and the edges (6,8) and (7,9) in G. This extension
of the dual c-graph is required to represent the fact that two edges emanating
from minimal vertices in G can share the same source. Consider, for example,
the c-graph in Figure 4(a). The subgraph of the dual c-graph obtained by per-
forming steps 1 and 2 of Definition 1 is shown in Figure 4(b). The structural
property of G that the edges (0,1) and (0,2) emanate from the same vertex is
not represented. The same applies to the edge (1,3) and (2, 3) that share the
same target. In other words, the graph depicted in Figure 4(b) could as well be
the dual of any of the c-graphs shown in Figure 4(c)—(e). Steps 3-6 in Definition 1
are required to make the mapping between G and G bijective.

Dual c-graphs are uniquely characterized by the following two properties.

1. All intermediate vertices belong to exactly two directed complete bipartite
subgraphs of G. They are minimal in one and maximal in the other.
Intermediate vertices in G are mapped onto complete bipartite subgraphs
(or bicliques) K, of G. The v incoming edges of some i € Z represent
the minimal vertices in K, ,. Similarly, the p outgoing edges correspond
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to the maximal vertices in K, ,. Obviously, each minimal vertex in K, ,
is connected with all maximal vertices because the corresponding edges are
incident in G. For example, in Figure 3, the biclique spanned by the locally
minimal vertices 3 and 5 and the locally maximal vertices 6 and 7 corresponds
to vertex 3 in G.

2. Minimal vertices in G belong to one directed complete bipartite subgraph,

and i € X, and i < j implies |Pj| = 1. Analogous, maximal vertices belong
to a single directed complete bipartite subgraph of G,and i €Y, and j=<i
implies |S;| = 1. Here, the notations P; and S; are used as defined in Section 1
with the precedence relation < applied to edges in G.
As a result of the construction described in Definition 1, all minimal vertices
in G are also minimal in the bicliques whose maximal vertices represent the
edges emanating from the corresponding minimal vertices in G. Examples
are the subgraphs induced by vertex —1 and vertex 1 in Figure 3, or the
biclique spanned by the vertices 0, 1, and 2 in Figure 4(f). By Definition 1,
the maximal vertices in these bicliques can have only one predecessor in G-
A similar argument applies to the maximal vertices in G.

Further consequences of the definition of dual c-graphs are the following.

Lemma 1. Leti,j € V such that (i,7) € E. Then k € V :i <* k <* j.

Proof. Let k € V be such that i < k < j. Furthermore, let (a,b), (c,d), (e, f) € E
be such that (a,b)=i, (¢,d)=k, and (e, f)=j. Then

1<7 = b=e
i<k = b=c
k<j = d=e
The above implies that ¢ = d, which represents a contradiction to the definition

of G as a directed acyclic graph. The lemma follows by induction over the length
of the path that connects ¢ and j while containing k. O

Lemma 2. Whenever two vertices in V' share a common predecessor (succes-
sor), their predecessor (successor) sets are identical.

Proof. Let i,j,k € V be such that k < i and k < j. The edges corresponding to
i and j in G have the same source. Therefore any edge that is incident to either
1 or j must be incident to the other. O

Definition 2 A semicycle is defined as two vertex disjoint paths sharing the
same source and the same target.

For example, the subgraph of G that is induced by the vertices 2, 3,4, 5, and 6
in Figure 3 is a semicycle.

Lemma 3. The length of any semicycle in G is greater than or equal to five.
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Proof. From Lemma 1, it follows that the length of any semicycle must be at
least equal to four. However, this situation corresponds to parallel edges in G,
which contradicts its definition. A semicycle of length five in G represents a
triangle in G, that is, a subgraph consisting of three vertices ¢,j,k € V such
that (i,7), (j, k), (i, k) € E. O

For example, the triangle spanned by the vertices 1, 2, and 3 in Figure 1 cor-
responds to the semicycle induced by the vertices 2, 3, 4, 5, and 7 in Figure 3.
Note that this mapping is not bijective. Other related semicycles of length five
in G are spanned by the vertex sets {1,3,4,5,7},{1,3,4,5,6}, and {2,3,4,5,6}.

3.2. Face Elimination

The elimination of transitive dependences can be inter-
preted as the elimination of edges in G. This modifica-
tion of the dual c-graph is also referred to as face elimi-
nation in order to distinguish between edge elimination
in G and G (see Section 3.3 for edge elimination in G).
Two intermediate vertices in G are adjacent if the corre-
sponding edges are incident in G. This property implies
that the transitive dependence to be eliminated does ac- 15
tually exist. A vertex j € V is called isolated if either

Pj = or Sj = .

Rule 1 Face elimination is defined for all intermediate
faces (i,j) € Ez as follows:

1. If there exists a vertex k € V such that P, = P; and
Sk = Sj, then set ¢, = cx + cjc; (absorption); else
V = VU{k'} with a new vertex k' such that Py = P;
and Sy = S; (fill-in) and labeled with ¢y = cjc;.
Remove (i, ) from E.
8. Remove i € V if it is isolated. Otherwise, if there exists a vertez i' € V such
that Pi/ = Pz and Si/ = Si, then
— set ¢; = ¢; + ¢y (merge);
— remove 1'.
4. Repeat Step 3 for j € V.

Fig. 5. G/

e

Rule 1 is illustrated in Figure 6. The dual c-graph G of Figure 3 can be trans-
formed into a tripartite form as shown in Figure 5 by applying face elimination
successively. The corresponding face elimination sequences are also referred to as
complete. Obviously, for the dual c-graph in Figure 3 there are a large number
of different face elimination sequences. We consider an example. Let us start
with the elimination of (1,3) € E. An absorbing vertex does not exist leading
to the generation of fill-in. The new vertex 10 is connected by new edges to all
successors of 3. A new edge connects the single predecessor of 1 with 10. Ver-
tex 10 is labeled with ¢;9 = c3c;. Neither 1 nor 3 is isolated or can be merged
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Fig. 6. Face elimination

with other vertices, and we get the graph in Figure 6(a). Edge (4,5) is elimi-
nated next, thus leaving both 4 and 5 isolated and resulting in their removal.
We observe that P; C P4 and S3 = S5, leading to the generation of fill-in in
the form of the new vertex 11. Its label is ¢;; = czcq. In the resulting graph,
shown in Figure 6(b), we eliminate (1,11), leading to the removal of vertex 1
because of isolation. Absorption takes place as P = P; and Sig = Si1. In
other words, the fill-vertex that is generated as a result of eliminating (1,11) has
the same predecessors and successors as vertex 10. Therefore it is absorbed and
¢10 = ¢1p + c11¢1. The result is shown in Figure 6(c). Moreover, P; = P;; and
S3 = Si1. Hence, 3 and 11 can be merged, leading to the graph in Figure 6(d),
where ¢3 = ¢3 + ¢11 = ¢3 + ¢5cq. By eliminating (2, 3) next, only five more face
eliminations are required to transform G into a tripartite form, as displayed in
Figure 5. The corresponding code for accumulating the Jacobian becomes

C10 = C3C2; C11 = C5C4; C1o = C10 + C11C1; €3 = €3 + C11; C12 = C3C2

C13 = CgC10; C14 = C7C10; C15 = CeC12;5 Ci16 = C7C12

Fully inlining all intermediate local partial derivatives verifies that cis,...,cig
are, in fact, the Jacobian entries as in (4). It remains to be shown that this graph
is the dual of G’ from Figure 2. Therefore, face elimination must always lead to
a result after performing a finite number of steps. The resulting graph must be
a dual directed bipartite graph, and the labels of the intermediate vertices must
be modified corresponding to the chain rule.

Lemma 4 (termination). Every complete sequence of face eliminations that
can be applied to a dual c-graph is finite.

Proof. We show that the sum L over the lengths of all paths connecting mini-
mal with maximal vertices in G is strictly monotonically decreasing under face
elimination.

Counsider the elimination of a face (i,7) € E . If absorption takes place, then
L is decreased by the sum over all paths containing (i,7) of their respective
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lengths. In the case of fill-in being generated, the length of each path through
(,7) is decreased by one. By merging two vertices k and k' the value of L is
decreased by the sum over all paths through k of their respective lengths. O

Lemma 5 (structural correctness). The result of eliminating all interme-
diate faces in a dual c-graph G is the dual c-graph G’ of a bipartite c-graph
G'.

Proof. We need to show that face elimination transforms any dual c-graph G
into a tripartite graph such that every intermediate vertex has exactly one prede-
cessor and one successor. This implies that the graph is a dual directed bipartite
graph and therefore structurally equivalent to a possibly sparse rectangular ma-
trix.

Edges connecting a minimal and a maximal vertex directly do not exist in
a dual c-graph G and they cannot be generated by face elimination. Since face
elimination is defined only for edges (i,5) € Ez (that is, i € Z and j € Z) it
must result in a tripartite graph.

Consider G as derived from a c-graph G following the construction in Defini-
tion 1. All successors of minimal vertices in G have in-degree one. This remains
true as long as edges emanating from successors of minimal vertices are not elim-
inated. Consider the elimination of an edge (j,k) € Ez such that (i,j) € Ex. If
the absorbing vertex for (4, k) exists, then the removal of (4, k) (possibly leading
to the removal of either j or k or both) is the only structural modification that
G is subjected to. Obviously, this would not violate the property that successors
of minimal vertices have a unique predecessor. Now, suppose that fill-in is gener-
ated as a result of eliminating (4, k). In this case i gets a new successor that has
i as its only predecessor. As above, (j,k) is removed from G. Again, successors
of minimal vertices have in-degree one in the resulting graph. Because of the
symmetry of face elimination, a similar argument applies to all predecessors of
maximal vertices. O

Lemma 6 (numerical correctness). Let G be the c-graph of a vector function
F, and let G be the corresponding dual c-graph. If face elimination transforms
G into G' as in Lemma 5, then the labels on the intermediate vertices in G' are
ezactly the nonzero entries of the Jacobian F'.

Proof. For G = (V,E), where V. = XUZUY, |Z| =p,andfor j € Y and i € X,
equation (3) can be rewritten as

Ov;_
o= 11 e ®

(i) keli—i]

where [i — j] denotes a vertex path connecting the corresponding i € X with
JjE Y in G. The ¢, are the labels of the vertices in G and we define ¢; = cj=1
for i € X and Jj € Y. Face elimination is equivalent to performing one of the
multiplications in equation (6) whereas merging two vertices in G means to add
their values. With the structural changes in G resulting from face elimination it
is obvious that the values computed in equation (6) are invariant. O
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The following two results ensure that merging vertices in G is not a recursive
procedure, which would increase the complexity of face elimination considerably.

Lemma 7. By the elimination of (i,j) € E; no vertex other than either i or j
becomes mergeable.

Proof. The elimination of (i, j) results in P; = P;\{i¢} and S; = S;\ {j}. If there
is a vertex j' in G such that Py = P; \ {i} and S;; = S; before the elimination
of (i,7), then j and j' can be merged after. A similar argument applies to .

If the absorbing vertex k for (i, ) exists in G, then all vertices other than i
and j that are mergeable after the elimination of (i, j) must have been mergeable
before.

Let the absorbing vertex for (i,j) not be in G. Fill-in is generated as k € V
such that P, = P; and S, = S;. If k could be merged with some &', then P, = Py
and S = Sy and k' would be the absorbing vertex for (i, 7).

Let some successor j' of j become mergeable with some j" as a result of
inserting k and (k,j’) € Ez. Then (k,j") must be in Ez, hence implying that
j" € S;. Furthermore, j' and j" must have been mergeable before the elimination
of (i,7). A similar argument applies to predecessors of k. O

Lemma 8. Merging two vertices in G cannot result in other vertices becoming
mergeable.

Proof. Let i,j € V be mergeable (that is, P; = Pjand S; = S;). Let i, j' € vV
become mergeable as a result of merging ¢ and j. W.Lo.g. let S; # S before
merging ¢ and j. More precisely, A = Sy N S; such that S; = AU {i} and
Sy = AU{j}. In this case, however, P; contains ¢’ but not j' and P; contains j',
but not i’, and therefore P; # P;, a contradiction to i and j being mergeable. O

3.3. Edge and Vertex Elimination

Suppose G is the dual of a c-graph G. Then the simultaneous elimination of all
edges emanating from some j € E in G results in a graph G*, which is again
a dual c-graph. This procedure is referred to as front elimination of the edge
corresponding to j in G. Similarly, the simultaneous elimination of all edges
leading into some j € E in G is referred to as back elimination of j in G. Edge
elimination can be defined directly on the level of the underlying c-graph G as
follows.

Rule 2 (Edge Elimination) 1. The back elimination of k = (i,j) € E is
performed by introducing new edges k' = (i',j) € E for all i’ with i’ < i and
i" £ j. The new edge labels are set to ¢ = cpepr, where k' = (i',i) € E.
For oll k' = (i',j) € E the existing edge labels are updated according to
Cr' = C + CpCgr.

2. k = (i,j) € E is front eliminated by introducing new edges k' = (i,j') € E
for all j' with j < j" and i £ j'. The new edge labels are set to ¢y = cyprey,
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Fig. 7. Vertex and Edge Elimination

where k"' = (j,7') € E. If k' = (i,j') € E, then the existing edge labels are
updated according to cy = cpr + Cprr C-
In both cases (i,j) is deleted. If this deletion leads to either i or j becoming
isolated, then the respective vertex is also removed from G together with all
incident edges.

The number of fma’s involved in the front elimination of an edge (i, j) is equal
to the number of successors of j, that is, [{j' : j < j'}|. Analogously, the back
elimination of the same edge would cost |{#' : i’ < i}| fma’s. Edges emanating
from (leading into) minimal (maximal) vertices in G cannot be back (front)
eliminated. This fact follows immediately from the fact that only intermediate
edges can be eliminated in G.

The elimination of a vertex in G can be formulated as a special case of edge
elimination in two ways.

Rule 3 (Vertex Elimination 1) A vertexi € V is eliminated from G by front
elimination of all its in-edges.

Rule 4 (Vertex Elimination 2) A vertezi € V is eliminated from G by back
elimination of all its out-edges.

It is easy to verify that Rule 3 and Rule 4 are equivalent. Being a special case of
edge elimination, vertex elimination can be defined on the c-graph. The number
of fma’s involved in the elimination of a vertex i is equal to |[{i' : ¢’ < i}||[{i" :
i < i"}| and is often referred to as the Markowitz degree of i.

Figure 7 illustrates the structural modification of G caused by edge and
vertex elimination. From left to right, we eliminate vertex 3 from the c-graph
shown in Figure 1, followed by the back elimination of (2, 4), the front elimination
of (0, 1), and the back elimination of (2, 5), which is equivalent to the elimination
of vertex 2. The labels on the edges are updated according to the rules above.

4. Optimal Jacobian Accumulation Problem

Three combinatorial optimization problems can be defined by building on the
elimination techniques introduced in Section 3. They are referred to as the ver-
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Fig. 9. Edge metagraph M,

tex elimination (VE), the edge elimination (EE), and the face elimination (FE)
problems. The objective is to minimize the number of fma’s required to accu-
mulate the Jacobian using the corresponding elimination technique. FE is the
most general of the three. It remains unclear, however, whether FE = OJA,
where OJA refers to the optimal Jacobian accumulation problem as introduced
in Section 1.

All three elimination problems can be interpreted as shortest path problems
in metagraphs. The vertices in My (M., M,) are defined as all graphs that
can be constructed by using face (edge, vertex) elimination starting with the
original dual c-graph G (or its underlying c-graph G). G is represented by the
unique source of the metagraph. The unique sink of the metagraph represents
G’, which is equivalent to the Jacobian. Two vertices s and t in a metagraph
are adjacent in a directed sense, that is, there is an edge (s, t) in the metagraph,
if the graph represented by ¢ can be obtained by performing a corresponding
single elimination in the graph represented by s. All edges in the metagraph
are labeled with distances reflecting the computational cost of performing the
corresponding face (edge, vertex) elimination. In particular, all edges represent
a distance of one in My. From the definition of the elimination techniques it
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Fig. 10. Face metagraph My

follows immediately that V(M,) C V(M,) C V(My), where V(G) denotes the
vertex set of some graph G. Here, V(M,) C V(My) means that for each vertex
i in M, there is a corresponding vertex j in My such that the graph associated
with j is the dual of the graph associated with i. From the algorithmic point
of view, the metagraphs are of only limited practicality, since their size grows
exponentially with the size of the original c-graph.

Consider, for example, the simple c-graph in Figure 8(a). It consists of two
minimal, a single intermediate, and two maximal vertices. Its dual is depicted in
Figure 8(b). The vertex metagraph M, turns out to be trivial, containing only
the source (representing the original c-graph) and the sink (corresponding to the
bipartite c-graph that represents the Jacobian). Both are connected by a single
directed edge labeled with a cost of four (the cost of eliminating vertex 1). M,
is shown in Figure 8(c).

The edge metagraph contains eight vertices corresponding to intermediate
c-graphs that can be constructed from the original c-graph by successive edge
eliminations. It is shown in Figure 9. Again, its source is the original c-graph,
and the objective is to find the shortest path to the sink (the bipartite c-graph).
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The edges are labeled with the respective costs for front or back eliminating an
edge. It is straightforward to verify that all paths in M, have length four. In
other words, any edge elimination sequence is optimal.

A similar effect can be observed for the face metagraph shown in Figure 10.
The source is the dual c-graph from Figure 8(b) and the sink is equivalent to the
Jacobian. Fourteen different intermediate graphs can be constructed by using
face elimination. Obviously, all edge labels in My are equal to one. Again, the
length of any path in M¢ is equal to four.

For the extremely simple c-graph in Figure 8(a), vertex, edge, and face elim-
ination techniques are equivalent with regard to the OJA problem. The fact
that M. C My can be verified easily. For example, an intermediate c-graph in
Figure 9 and its dual in Figure 10 are highlighted (framed).

The problem of minimizing the fill-in regarded as the number of fill edges
under a vertex elimination strategy was shown to be NP-complete [11] by Herley
[16] in an unpublished adaption of a note by Gilbert [12] on a result by Rose and
Tarjan [32] about vertex elimination techniques for solving sparse linear systems.
So far, it remains unclear whether the same is true for edge and face elimination
and whether this result can be used as a basis for showing the NP-completeness
of the OJA problem. In particular we have the following result.

Lemma 9. A vertex elimination sequence that minimizes the fill-in does not
necessarily minimize the number of fma’s performed.

A vertex elimination sequence that minimizes the number of fma’s performed
does not necessarily minimize the fill-in.

Proof. Consider the complete graph G = K5 = (V,E), where V =X U Z UY
such that X = {0}, Z = {1,2,3}, and Y = {4}. The edges (i,j) € E are such
that i < j. None of the six different vertex elimination sequence generates fill-in.
However, it is easy to verify that the cost of the vertex elimination sequence
[1,2,3] is six whereas, for example, [2, 1, 3] would involve seven fma’s.

Consider the graph on the left in Figure 12. There are two different vertex
elimination sequences which both involve 12 fma’s. Notice, that [1,2] generates
10 fill edges, while [2,1] results in 11. O

So far, no motivation has been given for introducing face and edge elimination
in addition to the conceptually much easier vertex elimination technique. The
reasons are formulated as Proposition 1 and Proposition 2. The basic ideas were
presented in [27]. To prove them, we require some further results.

Branch-and-bound algorithms [3] have proved useful for solving combinato-
rial optimization problems. We use the idea in the proof of Lemma 12. Suitable
lower bounds are crucial ingredients of this argument. In [28] we showed that the
sum over all intermediate vertices of their minimal Markowitz degrees is a lower
bound for the solution of the OJA problem. The minimal Markowitz degree of
a vertex j € V is defined as the product |P;||S;|, where P; and S; are minimal
X-j and j-Y separating vertex sets in G, respectively. Two other lower bounds
are established below for smaller classes of c-graphs.
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Fig. 11. Proof of Lemma 11

Definition 3 A directed acyclic graph is called absorption-free if any two ver-
tices are connected by at most a single directed path.

Absorption-free graphs do not contain semicycles as defined in Definition 2. For
example, trees are absorption-free. Notice that the dual of an absorption-free
c-graph is also absorption-free. This result follows from Definition 1.

Lemma 10. The cost of vertex elimination cannot be undercut by either edge
or face elimination for c-graphs with at most one intermediate vertex.

Proof. Let Z = {j} in G, and, w.l.o.g, let G be connected. Then any pair of
minimal and maximal vertices is connected by a path containing an intermediate
vertex. Consequently, | P;||S;] is a lower bound for the cost of accumulating the
corresponding Jacobian. This is exactly the cost of eliminating j. O

Lemma 11. Vertex elimination is optimal for absorption-free c-graphs with two
intermediate vertices i and j. If (i,j) € E, then the optimal vertex elimination
sequence is [i,7] if |P;| < |S;| and [4,1] if |P;| > |S;|. If (i,j) & E, then any vertex
elimination sequence is optimal, and the minimal cost is |P;||S;| + | P;||S; |-

Proof. If (i,j) ¢ E, then Lemma 10 can be applied separately to i and j. Let
(i,j) € E. To determine the optimal vertex elimination sequence and its cost,
let |P;| = ny, |Si| = m;+ 1, |Pj| = nj+1, and |Sj| = m;. There are two different
vertex elimination sequences. Their respective costs yield the inequality

ni(m; + 1) + (nj + ni)mj <mj(n; + 1) + (mj + m;)n;.

Its solution is given as n; < m;, which proves the second part of the lemma. The
situation is illustrated in Figure 11.

Suppose that there is an edge elimination sequence whose cost undercuts the
cost of an optimal vertex elimination sequence. The Jacobian can be partitioned
into the following three independent parts:

Aoy, keSi\{sj} vy kES; Ay, kES;
A= (Ov . B= (% , o=(Z2) .
i /) iep, i ) 1epy\qiy i /) iep,
Here, independent means that the costs of accumulating A, B, and C' are mu-
tually independent. In other words, [A, B, C|] represents a decomposition of the
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Jacobian F' such that the minimal cost of accumulating F' is exactly the sum
of the minimal costs of accumulating A, B, and C. Obviously, this is true for any
decomposition where the corresponding subgraphs of G share at most paths of
(edge-)length one.

By Lemma 10 the computation of A and B involves exactly n;m; and n;m;
fma’s, respectively. In the c-graph corresponding to C' any edge elimination se-
quence that does not yield a corresponding vertex elimination sequence would
have to be a mixture of back elimination of outedges of j and front elimination
of inedges of ¢. The cost of such an elimination sequence is given by

2 (e er) o) ) oo

l l
Yom=IRl . Y mi=1S]
k=1 k=1

where

and
_ e i S me < IS
it S me =S

It is easy to verify that this value is always greater than or equal to the cost of
an optimal vertex elimination sequence. [J

The expression in equation (7) describes the cost of any edge elimination se-
quence for accumulating C. For example, if all inedges of i are front eliminated
followed by the back elimination of the outedges of j, then [ = 1, and the cost is
equal to the cost of the vertex elimination sequence i, 7, that is,

ny +my(ny + 1) —my = |F|(|S;| + 1)

Similarly, if all outedges of j are back eliminated followed by the front elimination
of the inedges of i, then [ = 2, n; = 0, and the cost is equal to the cost of the
vertex elimination sequence j, ¢, that is,

my 4+ ny(my + 1) —ny = |S;|(|1P] + 1)

The back elimination of some outedges of j, say m; of them, followed by the
front elimination of all inedges of ¢ and the back elimination of the remaining
outedges of j implies I = 2, n; =0, n» = |P;|, and a total cost of

m1 + na(my + 1) + ma(ny +ne + 1) — my = my + |B5|(|S;] + 1)

Proposition 1 An optimal edge elimination sequence may involve fewer fma’s
than does an optimal vertex elimination sequence when applied to the same c-
graph.



18 Uwe Naumann

Proof. An example for which the proposition is true is presented on the left
side of Figure 12. The two possible vertex elimination sequences both require 12
fma’s. Back elimination of edge (2, 6) before the elimination of vertices 1 and 2
results in 11 fma’s. O

The argument leading to the construction of the example c-graph can be found
in Chapter 2 in [24]. Because of its shape (turn it 90 degrees clockwise) the graph
on the left side of Figure 12 is referred to as the lion graph. Recall the metagraph
formulation of the EE and VE problems. The set of all valid vertex eliminations is
contained within the set of all valid edge eliminations. Hence, the optimal vertex
elimination sequence is contained within the set of all edge elimination sequences,
and thus the optimal edge elimination sequence performs at most the same
number of arithmetic operations as the optimal vertex elimination sequence. The
lion graph represents one example where the optimal edge elimination sequence
involves fewer operations than does the optimal vertex elimination sequence.
The maximal difference over all c-graphs between the number of fma’s per-
formed by an optimal vertex and an optimal edge elimination sequence for the
same c-graph is referred to as vertez-edge discrepancy. Proposition 1 gives rise to
the fundamental question of how large this value can become. In [24] we showed

that it is equal to —+— =~ 1.207 for c-graphs containing two intermediate ver-

2(v2-1)
tices. The problem remains open for c-graphs with more than two intermediate

vertices.

Lemma 12. The cost of an optimal edge elimination sequence for the lion graph
is equal to eleven.

Proof. Using the bounds established above, we develop a branch-and-bound ar-
gument showing that starting with the elimination of any edge other than (2,6)
eventually leads to an increased number of fma’s. At every single step we decide
whether to continue branching into (branch) or to disregard the subtree (bound).
This decision is based on the current lower bound A, which is defined as the sum
of the costs of the edge eliminations performed so far and the values resulting
from the lower bounds for the cost of the remaining elimination.

For example, if we start with the front elimination of either (—1,1) or (0, 1),
then this involves the evaluation of two fma’s. A lower bound on the cost of
eliminating the remaining edges is given by the minimal Markowitz degree of 1,
which is equal to two, plus the minimal Markowitz degree of 2, which is equal to
eight, both after the elimination of (—1,1) or (0, 1). The sum of these values gives
A = 2+42+8 = 12. This value is already larger than the best-known value for the
number of fma’s, which is equal to 11. Therefore, this subtree can be excluded
from further consideration. This argument is represented in the decision tree as
follows:

— (=1,1) or (0,1) front = A =2+ 2+ 8 =12 ([28]) = bound.

On the other side, if we start with the back elimination of (2, 3), (2,4), or (2,5),
then this costs one fma. A lower bound for eliminating the remaining edges is
6+3 = 9. Both values add up to ten, which is below the best value known so far.
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6

Fig. 12. Lion (left) and bat (right)

Consequently, we must descend into the subtree because we cannot eliminate the
possibility that a better solution can be found. This situation is represented as
follows:

- (2,3), (2,4), or (2,5) back == A =1+ 6+ 3 =10 ([28]) = branch.

We assume that (2,3) is eliminated first. Because of symmetry, similar results
hold for (2,4) and (2,5). The entire decision tree is as follows:

— (=1,1) or (0,1) front = A =2+ 2+ 8 =12 ([28]) = bound.
)front=>)\—4+8—12 (Lemma 10) = bound.

) back = A =2+2+8 =12 ([28]) = bound.

) back = A =2+2+8 =12 (Lemma 11) = bound.

) (2,4), or (2,5) back = A =1+6+3 =10 ([28]) = branch.

1,1) or (0,1) front == A =143 +3+6 = 13 ([28]) = bound.

)front:>)\—1+3+8—12 (Lemma 10) = bound.

)back = A=1+2+4+6 =13 ([28]) = bound.

) back = A=1+2+4+6 =13 (Lemma 11) = bound.

)or (2,5) back > A=1+1+8+2=12 ([28]) = bound.

)back:>/\—1+2+4+3—10([28]):>branch

(—=1,1) or (0,1) front == A=1+2+2+2+6 =13 ([28]) = bound.

(

(

(

(

(
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)

1,2
1,2
1,6
2,4
1,3

2
2
6
3
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= (
= (
= (
= (
- (1,

,2) front => A =142+ 3+6 =12 (Lemma 10) = bound.

) back => A=14+2+2+2+6 =13 ([28]) = bound.

)back == A=1+2+2+2+46 =13 (Lemma 11) = bound.
)or (2,5) back > A=1+2+1+6+2=12 ([28]) = bound.
)back:>)\—1+2+1+4+4—12(Lemmall):>b0und.
- (2,6) back > A=1+1+46+4 =12 (Lemma 11) = bound.

— (2,6) back => A=1+4+46 =11 (Lemma 11) = solution.

1,2
1,2
1,6
2,4
2,6

°
°
°
°
° )
°

The solution can be obtained only by eliminating (2,6) first. Furthermore, by
Lemma 11, the optimal elimination sequence for the remainder of the graph is
given by [1,2], resulting in a optimal cost of eleven fma’s. O
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Proposition 2 An optimal face elimination sequence may involve fewer fma’s
than does an optimal edge elimination sequence when applied to the same c-graph.

Proof. Consider the c-graph on the right side of Figure 12. Because of its shape
it is referred to as the bat graph (turn it upside down). We show that there is
a face elimination sequence whose cost undercuts the cost of an optimal edge
elimination sequence for the bat graph. Similarly to the proof of Lemma 11, we
consider the following decomposition of the corresponding Jacobian matrix:

= <8vk>ke{4,5,6,7} B (avk>k€{4,5,6,7} |

Ot J 1eq—3,—2} O ) 1er-1,03

Both A and B correspond to a lion graph and can therefore be accumulated at
an optimal cost of 11 fma’s, respectively. Consequently, the whole Jacobian can
be obtained at a cost of 22 fma’sbased on the decomposition into A and B. It
is easy to verify that eliminating the two faces corresponding to the transitive
dependences 1 < 3 < 4 and 2 < 3 < 7, followed by the elimination of 1 and 2
and of all the remaining faces, results in a cost of 22 fma’s for accumulating the
Jacobian. To show that the decomposition into A and B contradicts the concept
of edge elimination, we note that

— (3,4) is back eliminated before (1,3) in A,
— (1, 3) is back eliminated before (3,7) in B,

(3,7) is back eliminated before (2,3) in B, and
— (2, 3) is back eliminated before (3,4) in A.

The contradiction follows immediately from this cyclic dependence.

Furthermore, we need to verify that there is no other edge elimination se-
quence that could possibly yield a cost of 22 fma’sor less. Considering all possi-
bilities for eliminating the first edge in G, we notice that

— front elimination of ¢; or ¢s or back elimination of ¢s, cg, c19, €11, OF €12
increases the cost of accumulating A by at least one, and

— front elimination of c3 or ¢4 or back elimination of ¢y, cg, ¢g, c19, Or ¢11
increases the cost of accumulating B by at least one.

Furthermore, these edge eliminations do not decrease the cost of accumulating
the other half of the Jacobian, respectively.

In summary, partitioning the bat graph into two lion graphs allows us to
compute the Jacobian at a cost of 22 fma’s. The accumulation of the two halves
of the Jacobian cannot be expressed as an edge elimination sequence in the bat
graph. Any edge elimination sequence is bound to increase the cost of accumu-
lating the Jacobian by at least one. This completes the proof. O

Comments similar to those made in connection with the proof of Proposi-
tion 1 apply to the preceding argument. In particular, the optimal edge elimina-
tion sequence is contained within the set of all valid face elimination sequences.
The bat graph represents an example of an optimal face elimination sequence
not being contained within the set of all feasible edge elimination sequences.
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Proposition 2 raises questions regarding the vertex-face and edge-face discrep-
ancies. The search for an answer is the subject of ongoing research. After all,
Proposition 2 is the reason for introducing the concept of dual c-graphs together
with face elimination.

5. Algorithms

The idea of optimizing the computation of Jacobians by different vertex elimi-
nation sequences in linearized c-graphs was suggested in [15]. A greedy heuristic
strategy based in the Markowitz criterion (the vertex with the lowest Markowitz
degree is eliminated next) adapted from the theory on sparse linear systems was
explored there as well. In [5] the same problem was regarded as a shortest path
problem in the vertex metagraph M, and an exponential dynamic programming
algorithm was discussed. Edge elimination and the corresponding vertex-edge
discrepancy were proposed in [24] together with a number of heuristic strate-
gies for optimizing the elimination sequences. Face elimination and the edge-face
discrepancy are introduced in this paper.

A variety of test problems were considered in [24] in connection with dif-
ferent strategies for vertex and edge elimination. In most cases the number of
fma’s required for the accumulation of the Jacobians was decreased by factors
between two and ten. In [34] these theoretical savings were shown to result in
corresponding runtime savings by generating the code for computing the Jaco-
bian.

First improvements to the greedy Markowitz heuristic [15] were proposed in
[25] in the form of the relative Markowitz heuristic for vertex elimination. Further
ideas were presented in [24] based on global information such as the number
of paths in the c-graph or their overall length. Various new Markowitz-type
heuristics for vertex, edge, and face elimination are proposed in [2]. Chapter 8 in
[13] contains an example of Markowitz degree-based heuristics not performing
well on evolutions. The performance of the Jacobian codes for a Roe-flux CFD
kernel generated using various heuristics was investigated in [34].

Jacobian matrices can be evaluated as chained products of local extended
Jacobians as described in [14]. The well-known dynamic programming algorithm
for optimizing chained products of dense matrices with different dimensions [17]
can be adapted for the sparse case at the cost of a reasonable overhead. Instead
of working with integers representing the dimensions of the respective dense
factors, the sparsity pattern of all intermediate subproducts must be computed
explicitly.

Simulated annealing [22] was first applied to the problem of finding nearly
optimal vertex elimination sequences in [26]. In this case it proved to be rather
straightforward to define a feasible neighborhood relation and corresponding
rearrangements. The impact of different annealing schedules based on both ho-
mogeneous and inhomogeneous Markov chains on the convergence of the algo-
rithm was shown with the help of numerous test problems. A more theoretical
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analysis of vertex elimination in the light of logarithmic cooling schedules for
inhomogeneous Markov chains was presented in [30].

6. Summary and Conclusion

The aim of this paper was to present a theoretical basis for developing opti-
mized derivative code motivated by the potential runtime savings that could be
observed using the techniques mentioned in Section 5. Face elimination in dual
computational graphs was introduced as a technique for solving the correspond-
ing combinatorial optimization problem, and its superiority over edge and vertex
elimination in linearized computational graphs was shown. Here, superiority is
understood in terms of the number of fused multiply-add operations performed
by an optimal elimination sequence. Various results were shown that are likely to
have an important impact on the further development of elimination algorithms.

It still remains to be seen, whether face elimination can be regarded as the
most general Jacobian accumulation procedure, that is, a sequence of multi-
plications and additions starting from the elementary partial derivatives and
yielding all nonzero Jacobian entries. Further investigations are needed to prove
this conjecture.

We see two potential fields of application for the techniques presented here
and for further algorithms to be developed on the basis of these techniques.
First, the preaccumulation of local Jacobians at the level of basic blocks should
become a fundamental feature of differentiation enabled compilers. Second, opti-
mized Jacobian code can be generated for routines within heavily used numerical
libraries (e.g., BLAS [33] or the NAG numerical library [20]) or simulation codes
(e.g., MIT general circulation model [21]). Highly efficient implementations of
robust heuristics will probably be preferred in the former case to keep the com-
pile time minimal. More expensive methods such as simulated annealing can be
tried if the compile time is not a crucial factor.
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